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Abstract

Given a graph G, a k-total difference labeling of the graph is a total labeling f from the
set of edges and vertices to the set {1, 2, · · · k} satisfying that for any edge {u, v}, f({u, v}) =
|f(u) − f(v)|. If G is a graph, then χtd(G) is the minimum k such that there is a k-total
difference labeling of G in which no two adjacent labels are identical. We extend prior work
on total difference labeling by improving the upper bound on χtd(Kn) and also by proving
results concerning infinite regular graphs.

By a k-vertex labeling of a graph, we mean a function f from the vertices to the positive integers
{1, 2, · · · k} for some k. Similarly, by a k-edge labeling of a graph, we mean a function f from the
edges to {1, 2, · · · k} for some k. A k-total labeling is a function f from the set of edges and vertices
to {1, 2, · · · k} for some k. A k-vertex labeling is said to be proper if no two adjacent vertices share
the same label. Similarly, a k-edge labeling is proper if no two edges that share a vertex share a
label. A proper k-total labeling is a k-total labeling such that its corresponding k-edge labeling is
proper, its corresponding k-vertex labeling is proper, and no edge has the same label as either of
its vertices.

Ranjan Rohatgi and Yufei Zhang introduced the idea of a total difference labeling of a graph [4].

Given a graph G, a k-total difference labeling of the graph is a total labeling f from the set of
edges and vertices to the set {1, 2, · · · k} satisfying that for any edge {u, v}, f({u, v}) = |f(u)−f(v)|.
Recall that a total labeling of a graph is a labeling of both the edges and vertices of a graph. In
general, f is a function from the union of the edge set and vertex set of G (denoted by E(G) and
V (G), respectively) to the set {1, 2, · · · , k}. We will concern ourselves with proper total difference
labelings. In a proper k-total difference labeling, f is a function from V (G) ∪ E(G) to the set
{1, 2, · · · , k} that satisfies the following properties:

1. For any edge {u, v}, f({u, v}) = |f(u)− f(v)|.

2. No two adjacent vertices have the same same label. That is, if {u, v} is an edge, then
f(u) 6= f(v).

3. No two adjacent edges have the same label. That is, if {u, v} and {v, w} are edges, then
f({u, v}) 6= f({v, w}).

4. No vertex has the same label as an edge incident with it. That is, if {u, v} is an edge, then
f(u) 6= f({u, v}).

Property (1) is the defining property of total difference labelings, while properties (2), (3), and
(4) make such a labeling proper. Note that the edge labels of a total difference labeling are deter-
mined by the vertex labels. Thus, we will often abuse notation and simply refer to the labeling of
the vertices as the total difference labeling. We will typically abbreviate “total difference labeling”
to “TDL”; we will also typically omit “proper” when referring to proper TDLs.
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Rohatgi and Zhang define χtd(G) as the smallest k such that G has a proper k-total difference
labeling. They calculated χtd(G) for a variety of graphs, including stars, wheels, and helms, as well
as providing upper and lower bounds on χtd of other graphs, such as trees and complete graphs.
This paper extends their work in three main ways.

First, we provide an essentially complete description of χtd(Kn) for complete graphs and use
this to bound χtd(G) in general for any graph G in terms of its order. To do this, we introduce the
idea of a specialized set of numbers we call a well-spaced row (occasionally abbreviated to “WSR”).

Second, we calculate χtd(G) for various well-behaved infinite graphs, including the infinite
square lattice. We also provide upper and lower bounds for χtd(G) for some other infinite graphs.

Third, we estimate χtd(Qn) for the hypercube graph Qn.

This paper is divided into five sections. In the first section, we review aspects of Rohatgi and
Zhang’s work. We also discuss other similar labeling rules.

In the second section, we introduce the ideas of well-spaced rows and star-elimination, which
are major techniques that will be used throughout the rest of the paper.

In the third section, we calculate χtd for various infinite graphs, in particular the square lattice,
the hexagonal lattice, the triangular lattice, and the infinite binary tree. We also give upper and
lower bounds for the cubic lattice.

In the fourth section, we introduce the idea of a clone of a graph, and use this to estimate
χtd(Qn) of a hypercube.

In the fifth section, we introduce the idea of saturated labelings and saturable graphs. This
leads to two classes of graphs whose TDLs are particularly nice: saturable graphs and supersatu-
ratable graphs.

1 Earlier work

Fundamentally, all of the different labeling schemes under discussion can be thought of as exten-
sions of graph and edge labeling. Classically, given a graph G, χ(G), called the coloring number
of G, denotes the minimum number of distinct colors needed to label every vertex of G such that
no two adjacent vertices are the same color. Instead of using colors one can use a labeling function
f from the vertices to {1, 2 · · · k}, which allows a much more natural framework. Thus, when we
speak of a “vertex coloring” of a graph we will mean a labeling of a graph’s vertices with positive
integers. One then defines the coloring number χ(G) as the minimum k such that there is a labeling
function f with the property that f(u) 6= f(v) when u, v ∈ V (G) are adjacent. In this context,
the most notable result is of course the famous Four Color Theorem, which says that any planar
graph G satisfies χ(G) ≤ 4.

One major result about the behavior of χ(G) is Brooks’s theorem [1], which states that for any
graph G, χ(G) ≤ ∆(G) + 1, with equality if and only if G is a complete graph or a cycle. Here
∆(G) is the maximum degree of any vertex of G.

Similarly, k-edge labelings have been investigated. Define χ′(G) to be the minimum k such that
G has a proper k-edge labeling. A classic result of Vizing [6] states that ∆(G) ≤ χ′(G) ≤ ∆(G)+1.
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a 2a
2a− a = a

Figure 1: A double.

a b a
|a− b| |a− b|

Figure 2: A sandwich.

Let χ′′(G) be the minimum k such that a proper k-total labeling of G exists. One of the major
open problems in this area is the total coloring conjecture, which states that χ′′(G) ≤ ∆(G) + 2.

In the last few years, a variety of papers, such as [4], have looked at various ways to combine
edge colorings and vertex colorings where the edge colors are a function of the vertex colors. An-
other recent example is [5], which defined an edge-coloring k-vertex weighting as a function f from
the vertices and edges of G to {1, 2 · · · k} where for any edge {u, v}, f({u, v}) = f(u) + f(v), and
the corresponding edge labeling is proper. They then defined µ′(G) of a graph G as the minimum
k such that an edge-coloring k-vertex weighting exists. One can similarly define µ′′(G) which is
the minimum k such that there is an edge-coloring k-vertex weighing which is also a proper vertex
labeling. It is not hard to show that χtd(G) ≥ µ′′(G) ≥ µ′(G), since any total difference labeling
will also be an edge-coloring k-vertex weighting.

For the remainder of this paper, we will concern ourselves only with total difference labelings
and their behavior; recall that we will often omit the word “proper”.

One of the basic results of [4] is a description of total difference labeling just in terms of the
vertices by introducing doubles and triples. Rohatgi and Zhang proved that a total difference
labeling is proper if and only if it is a proper k-total labeling and it avoids doubles and triples.
What do we mean by doubles and triples?

Let f be a total labeling function of G. A double is a pair of adjacent vertices u and v with
f(u) = 2f(v) (see Figure 1. Note that if there exists a double {u, v} in G then f({u, v}) =
f(u) − f(v) = 2f(v) − f(v) = f(v); then f(v) has the same label as f({u, v}), and the labeling
due to f is not a total difference labeling.

There are two species of triple. The first is a set of three vertices u, v, and w with u adjacent
to v and v adjacent to w satisfying f(u) = f(w). Notice that regardless of what label is given to
v, we will then have f({u, v}) = f({v, w}). If we have this arrangement, we do not have a TDL.
We will call this type of triple a sandwich (see Figure 2).

The second type of triple is a set of three vertices u, v, and w with u adjacent to v and v
adjacent to w such that f(u), f(v), and f(w) form an arithmetic progression. This would also
cause f({u, v}) = f({v, w}), in which case we would not have a TDL. We will call this type of
triple a staircase (see Figure 3).

Rohatgi and Zhang proved that a total difference labeling is proper if and only if the labeling
has no doubles or triples. They did so by using the equivalence of the above description of doubles
and triples with respect only to vertex labels and the definition of doubles and triples using both
vertex labels and edge labels.
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a a+b a+2b
|a− (a+ b)| = b |a+ b− (a+ 2b)| = b

Figure 3: A staircase.

Rohatgi and Zhang proved a variety of bounds on χtd for different graphs. Here, we summarize
the bounds we use or improve on this paper.

Proposition 1. (Proposition 2.11 in [4]) Let G′ be a subgraph of G. Then χtd(G′) ≤ χtd(G).

Proposition 2. (Proposition 2.5 in [4]) Let G be a graph with n vertices. Then χtd(G) ≤ 3n−1.

Due to Proposition 1, Proposition 2 is an upper bound on χtd of the complete graph Kn, which
is the graph with the highest χtd of the graphs with n vertices (as all such graphs are subgraphs
of Kn). We will in the next section construct a substantially better bound on χtd(Kn).

Proposition 3. (Theorem 3.1 in [4]) Let n ≥ 4 and let Pn be the path on n vertices. Then
χtd(Pn) = 4.

Proposition 4. (Theorem 3.2 in [4]) Let n > 2 and let Cn be the cycle on n. Then χtd(Cn) = 4
if n ≡ 0 (mod 3) and χtd(Cn) = 5 otherwise.

Proposition 5. (Theorem 4.1 in [4]) Let K1,m be the star graph with m neighbors of the central
vertex. Then χtd(K1,m) = m+ 1 when m is even and χtd(K1,m) = m+ 2 when m is odd.

Although not mentioned in [4], it is worth noting that it is an immediate consequence of
Proposition 4 and Proposition 5 together with Brooks’s theorem that for any connected graph G
with more than one vertex, one has χ(G) < χtd(G).

They also proved a lower bound for a large class of graphs.

Proposition 6. (Proposition 2.8 in [4]) Let G be a graph with n vertices where the diameter of
G is at most 2. Then χtd(G) ≥ n, and all the vertex labels of G must be distinct in any total
difference labeling of G.

2 Well-spaced rows and star-elimination

We define a well-spaced row to be a set of positive integers such that no element is twice another
element and no three elements form an arithmetic progression. Well-spaced rows are useful in
finding upper bounds on χtd(G), as their elements avoid doubles and staircases.

A minimal well-spaced row is a well-spaced row that, given a finite cardinality, has the least
possible maximum element. This is different from a greedy well-spaced row, which is generated from
the greedy well-spaced row algorithm. The greedy well-spaced row algorithm takes in a number of
elements n and outputs a well-spaced row in the following manner. At each step, the algorithm
appends the least positive integer such that the resulting set is a well-spaced row; it repeats until
the set, a well-spaced row, has n elements. For example, if we ask the algorithm for a 4-element
greedy well-spaced row, it does the following:

1. Append 1.

2. Check 2. Do not append it, because it would form a double with 1.

3. Check 3. Append 3.

4. Check 4. Append 4.

4



5. Check 5. Do not append it, because it would form a staircase with 1 and 3.

6. Check 6. Do not append it, because it would form a double with 3.

7. Check 7. Do not append it, because it would form a staircase with 1 and 4.

8. Check 8. Do not append it, because it would form a double with 4.

9. Check 9. Append 9.

10. Output the greedy well-spaced row with 4 elements: {1, 3, 4, 9}.

In pseudo-code, the greedy well-spaced row algorithm is the following:

Algorithm 1: Greedy well-spaced row algorithm

input : A number n of elements in the output greedy WSR
output: A greedy WSR with n elements
array ← [ ];
if n = 1 then

return array;
else

temp ← greedyWSR(n-1);
max value ← max(temp);
n ← max value + 1;
appendToTemp(n);

1 while not isWSR(temp) do
removeFromTemp(n);
n = n+ 1;
appendToTemp(n);

end
return temp;

end

The above algorithm is equivalent to the following algorithm: For each positive integer k (with
1 ≤ k ≤ n), convert k − 1 to binary, then output the result as if it were ternary (base 3). For
example, the 13th element in a greedy well-spaced row is output as follows.

1. Convert 13 to binary: 11012.

2. Read 11013, which is 3710.

It is possible to implement this algorithm in one line of code.

Closely connected to the idea of a well-spaced row is that of a non-averaging set. A non-
averaging set is a set S of non-negative integers that includes 0 such that no element of S is the
average of two other elements of S. Non-averaging sets are equivalent to well-spaced rows with
the addition of the element 0. In other words, if a set S is a non-averaging set, then S − {0}
is a well spaced row. Given a well-spaced row R, then R ∪ {0} is a non-averaging set. This is
because an illegal double in a well-spaced row is equivalent to an illegal arithmetic progression
with first element 0 in a non-averaging set. Non-averaging sets have been previously studied. See
for example, work by Moser [2]. The greedy approach to producing non-averaging sets was also
studied by Odlyzko and Stanley [3].

Note that the greedy algorithm does not in general produce a minimal well-spaced row. For
example, the greedy well-spaced row of length 4 is {1, 3, 4, 9}, but {1, 3, 7, 8} is also a well-spaced
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row of length 4, with greatest element 8 < 9.

An immediate consequence of the greedy well-spaced row construction is the following.

Theorem 7. For any graph G with at most n vertices, χtd(G) ≤ 3dlog2 ne.

Proof. Assume that G has at most n vertices. Let k be the smallest positive integer such that
2k ≥ n. Then we may label the vertices of G with a subset of the labels of the greedy well-spaced
row with 2k elements, whose largest element is precisely 3k.

Notice that
3dlog2 ne < 31+log2 n = 3nlog2 3,

and so Theorem 7 gives a much tighter bound than Proposition 2, which gave a bound exponential
in n.

Given n, we will write OS(n) to be the largest element in the greedy well-spaced row of size
n. We will write E(n) to be the largest element in any minimal well-spaced row of size n. We
will write D(n) to be the number of distinct well-spaced rows with n elements and largest element
E(N). We write Mi1(n) to be the minimum number which appears in any well-spaced row with
n elements and maximum element E(n). We write Mi2(n) to be the maximum of the smallest
element in each minimal well-spaced spaced row with n elements and maximum element E(n).
Note that

Mi1(n) ≤Mi2(n) ≤ E(n) ≤ OS(n).

Also, if D(n) = 1, then one must have Mi1(n) = Mi2(n).
We have the following data:

n OS(n) E(n) D(n) Mi1(n) Mi2(n)
1 1 1 1 1 1
2 3 3 2 1 2
3 4 4 1 1 1
4 9 8 4 1 2
5 10 10 7 1 2
6 12 12 6 1 2
7 13 13 1 1 1
8 27 19 2 1 2
9 28 23 2 1 1
10 30 25 2 1 2
11 31 29 1 2 2
12 36 31 2 1 1
13 37 35 2 1 1
14 39 39 20 1 2
15 40 40 1 1 1
16 81 50 14 1 3
17 82 53 2 1 2
18 84 57 2 4 Mi2
19 85 62 2 2 Mi2
20 90 E D Mi1 Mi2

In the Online Encyclopedia of Integer Sequences, OS(n) is sequence A005836 and E(n) is
A005047. Currently, D(n), Mi1(n), and Mi2(n) do not appear to be in the database.

Based on the above, a few questions present themselves which as far as we are aware have not
been asked previously about well-spaced rows (or asked equivalently about non-averaging sets):
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1. Are there infinitely many n where the greedy algorithm gives a well-spaced row with the same
maximum element as the minimal well-spaced row of the same size? That is, is OS(n) = E(n)
for infinitely many n?

2. Can Mi1(n) grow arbitrarily large? Can Mi2(n) grow arbitrarily large? Further, will Mi1(n)
or Mi2(n) take on every positive integer value?

3. Can D(n) grow arbitrarily large, and if so will it take on every positive integer value?

4. Is D(n) = 1 infinitely often?

5. Is Mi1(n) = 1 infinitely often? Is Mi2(n) = 1 infinitely often?

Since E(n) is an increasing function, it is also natural to ask about the behavior of the first
difference of E(n). In particular, set J(n) = E(n+ 1)−E(n). Then we may also ask similar
questions about J(n). Two questions then seem particularly natural:

6. Does J(n) take on every positive integer value?

7. Is J(n) = 1 infinitely often?

Star-elimination is a method that can be used to find lower bounds on the total difference
labeling numbers of regular infinite graphs. Recall that each vertex in a regular graph has the
same degree. In an infinite regular graph G, each vertex is the center of a star subgraph K1,∆ of
G, where ∆ is the degree of each vertex in the graph. Because K1,∆ is a subgraph of an infinite
∆-regular graph Ω, Proposition 1 yields the quick lower bound χtd(Ω) ≥ χtd(K1,∆), which is either
∆ + 1 or ∆ + 2, as per Proposition 5. This lower bound is a starting point for the main part of
the star-elimination method.

The main part of the star-elimination method is outlined here. We will outline the basic method
first, and in Section 3, we will apply the method to the three infinite regular graphs that tile the
Euclidean plane regularly.

Assume a lower bound x = χtd(G). We then try to show that it is impossible to label the
relevant star subgraph S = K1,∆ given this value and given the restriction that all labels must be
distinct, as per Proposition 6. If a contradiction arises, we set x + 1 = χtd(G) and repeat until
this procedure fails, at which point the star-elimination method has produced a lower bound on
the true value of χtd(G). In most of our cases, the star-elimination method will produce a lower
bound that is best possible.

To find a contradiction in x = χtd(G), we assume each value k from 1 to x is the label of the cen-
ter of a star S, because in a regular infinite graph each label is assigned to the center of some such S.

In each case, we find the number of vertex labels that could neighbor the center of S. We start
with a given k which is at most x, and assume that k is the center of a star. We then list all the
possible labels, from 1 to x. We first note that k itself is removed immediately from this list, as
the center’s label is k, so none of its neighbors can be labeled k.

When k is even we may also remove k
2 from our list, as it would create a double with k.

Similarly, we may remove 2k. Note that we may have only one element from each pair of numbers
that produces a triple with k as the second element. For example, if we have assumed 4 to be the
center label, we must eliminate one of each of 1 and 7, 2 and 6, and 3 and 5 — note that 2 would
have already been removed in the previous step. If the number of available labels remaining is
less than the number of vertices ∆ neighboring the center of S, then k cannot be a vertex label.
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1 3 4 9 10

9 10 1 3 4

3 4 9 10 1

Figure 4: Subgraph of ΩS and corresponding 10-total difference labeling.

We repeat this procedure for all labels from 1 to x, marking each label as either “possible” or
“impossible”. The order in which we check the labels from 1 to x is tactical, as eliminating some
values of k will depend on the prior elimination of other values of k. If at any point total the
number of “possible” labels for vertices is less than ∆ + 1, then we have produced a contradiction
and we may conclude that χtd(G) > x.

3 Total difference labeling of infinite graphs

We begin by finding the total difference chromatic number of the infinite square lattice, which we
denote by ΩS .

Theorem 8. We have χtd(ΩS) = 8.

Proof. We prove this in two parts, first using well-spaced rows to show that χtd(ΩS) ≤ 8. Then
we use star-elimination to prove that χtd(ΩS) ≥ 8.

Let us first find an upper bound using well-spaced rows. Clearly each star subgraph K1,4 of
ΩS uses five distinct labels. The greatest element of a minimal well-spaced row with five elements
is 10, as in W = {1, 3, 4, 9, 10} (which incidentally is the same as the greedy well-spaced row of
five elements). Labeling a “row” of vertices in ΩS (hence the name “well-spaced rows”) with the
elements of W , then labeling an adjacent row in the same way but with labels shifted two vertices
in either direction, and so on, gives a total difference labeling of ΩS with χtd(ΩS) = 10 (see Figure
4).

We now find a lower bound using star-elimination. We have an upper bound of 10, and be-
cause χtd(K1,4) = 5 (as each vertex is the center of a χtd(K1,4)), we have a lower bound of 5, so
5 ≤ χtd(ΩS) ≤ 10. Assume χtd(ΩS) = 5. Then there is some vertex labeled 1, which would be
at the center of a K1,4. Its four neighbors must have the distinct labels {2, 3, 4, 5} (if they were
not distinct, then there would be a sandwich with the two identically labeled vertices). However,
a vertex labeled 2 cannot be adjacent to a vertex labeled 1, and thus we have a contradiction, so
χtd(ΩS) > 5.

Now assume χtd(ΩS) = 6. (This will be a clearer demonstration of the star-elimination method
than the last one, for which it was trivial to find a contradiction). If we can show that two of the
six labels {1, 2, 3, 4, 5, 6} cannot appear in the labeling, then we have found a contradiction.

1. Assume that 3 is included somewhere in a 6-TDL of ΩS . The vertex v with label 3 has four
neighbors, each necessarily distinct (to avoid sandwiches). We first remove 3 from the list
of possible labels ({1, 2, 3, 4, 5, 6}), as v cannot be adjacent to a vertex labeled 3. We also
remove 3×2 = 6, leaving {1, 2, 4, 5} as the only possible labels. We now remove one of 1 and
5 (if both were present, there would be a {1, 3, 5} triple) and one of 2 and 4 (if both were
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2 3 7 2 3 7

8 1 6 8 1 6

3 7 2 3 7 2

1 6 8 1 6 8

Figure 5: Subgraph of ΩS and corresponding 8-total difference labeling.

present, there would be a {2, 3, 4} triple). This leaves only two possible labels for the four
neighbors of 3, which is a contradiction, so no vertex can be labeled with 3.

2. Assume that 4 is included somewhere. The list of possible labels for the neighbors of 4 is
{1, 2, 4, 5, 6}. Note that 3 is not included, as we removed it in (1). We also remove 4

2 = 2,
leaving {1, 5, 6}. Already we are left with only three labels for the four neighbors of 4, so no
vertex can be labeled with 4.

Because this leaves only four distinct labels for a TDL of ΩS , we have a contradiction and
χtd(ΩS) > 6.

We now show, again using star-elimination, that χtd(ΩS) > 7. We begin by assuming χtd(ΩS) =
7. In this case, we will need to eliminate three of the seven potential labels {1, 2, 3, 4, 5, 6, 7} to
show a contradiction.

1. Assume that 4 is included somewhere in a 7-TDL of ΩS . The vertex v with label 4 has four
neighbors, each necessarily distinct (to avoid sandwiches). We first remove 4 from the list
of possible labels, as v cannot be adjacent to a vertex labeled 4. We also remove 4

2 = 2,
leaving {1, 3, 5, 6, 7}. We finally remove one of 1 and 7 as well as one of 3 and 5. This leaves
three possible labels for the four neighbors of v, which is a contradiction, so no vertex can
be labeled with 4.

2. Assume that 3 is the label of some vertex v in ΩS . We remove 3, 4, and 6 from the list
of possible labels of the neighbors of v, leaving {1, 2, 5, 7}; we then remove one of 1 and 5,
leaving three labels for the four neighbors of v, which is a contradiction, so no vertex can be
labeled with 3.

3. Assume that 6 is the label of some vertex v in ΩS . We remove 3, 4, and 6 from the list
of possible labels of the neighbors of v, leaving {1, 2, 5, 7}. We also remove one of 5 and
7, leaving three labels for the neighbors of v, which is a contradiction, so no vertex can be
labeled with 6.

Because this leaves only four distinct labels for a TDL of ΩS , we have a contradiction and χtd(ΩS) >
7. We can improve our weak upper bound from 10 by increasing the number of distinct labels being
used. The six labels {1, 2, 3, 6, 7, 8} contain two potential doubles and two potential staircases.
However, they can be arranged to form a valid 8-total difference labeling of ΩS , as shown in Figure
5.

The situations for the total difference chromatic numbers of the infinite hexagonal and trian-
gular lattices are similar. We denote the infinite hexagonal lattice by ΩH and follow a procedure
similar to the one used for ΩS , using well-spaced rows and star-elimination for upper and lower
bounds.
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Figure 6: Representation of ΩH as a subgraph of ΩS .

1 3 7 8 1 3

7 8 1 3 7 8

1 3 7 8 1 3

7 8 1 3 7 8

Figure 7: Upper-bound 8-TDL of subgraph ΩH .

Theorem 9. We have χtd(ΩH) = 7.

Proof. ΩH is 3-regular, so each of its vertices is the center of a K1,4. The greatest element of a
minimal well-spaced row with four elements is 8, as in W = {1, 3, 7, 8}. The construction of “rows”
is not as obvious for ΩH as it is for ΩS , but we can structure ΩH as a subgraph of ΩS as follows:
Construct ΩS , then remove alternating vertical edges within a row, then shift horizontally by one
vertex, repeat in the adjacent rows, and so on, as shown below in Figure 6. Assign a minimal
well-spaced row with four elements, such as W , to each row of the graph, shifted horizontally by
two vertices in each adjacent row, as in the upper-bound construction for χtd(ΩS) in Figure 4; see
Figure 7 for a subgraph of ΩH with this labeling. Notice that this results in pairs of labels in each
“column” of vertices; this will be a useful pattern below.

We now find a lower bound using star-elimination. Because ΩH is 3-regular, each vertex is the
center of a K1,3; we therefore have a lower bound on χtd(ΩH) of χtd(K1,3) = 3 + 2 = 5. So we first
assume χtd(ΩH) = 5.

1. Assume 3 labels some vertex v in a 5-TDL of ΩH . We eliminate 3, as well one of 1 and 5 and
one of 2 and 4, from the list of possible labels for neighbors of v. This leaves two possible
labels for the three neighbors of v, which is a contradiction; therefore, 3 does not appear
anywhere in a 5-TDL of ΩH .

2. Now assume 1 labels some vertex v. We eliminate 1 and 2 from the list of possible labels for
neighbors of v. We also remove 3, due to (1), leaving only 4 and 5 as possible labels of the
three neighbors of v, which is a contradiction; therefore, 1 does not appear anywhere in a
5-TDL of ΩH .

We are left with three labels for a 5-TDL of ΩH , which is impossible. Therefore χtd(ΩH) > 5.
Now assume χtd(ΩH) = 6.

1. Assume 3 appears in a 6-TDL of ΩH . We eliminate 3 and 6, as well as one of 1 and 5 and
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3 1 5 3 6 4

4 6 2 7 1 3

3 1 5 3 6 4

4 6 2 7 1 3

Figure 8: Subgraph of ΩH with 7-TDL. The pattern is apparent in columns of vertices.

Figure 9: Representation of ΩT as a graph containing ΩS as a subgraph.

one of 2 and 4, leaving two possible labels for its neighbor, which is a contradiction; 3 does
not appear.

2. Assume 2 appears. We remove 1, 2, 3, and 4, leaving only 5 and 6, which is a contradiction;
2 does not appear.

3. Assume 5 appears. We remove 2, 3, and 5, as well as one of 4 and 6, leaving two possible
neighboring labels, which is a contradiction; 5 does not appear.

We are again left with the three labels {1, 4, 6} for a 6-TDL of ΩH , which is impossible. Therefore
χtd(ΩH) > 6. Star-elimination fails to produce a contradiction for χtd(ΩH) = 7, and in fact we can
find a construction with χtd(ΩH) = 7, using all 7 labels {1, 2, 3, 4, 5, 6, 7}. We do this by labeling
the columns of vertices with the pairs of labels {3, 4}, {1, 6}, {5, 2}, and {3, 7}, as shown in Figure
8.

We finally find χtd(ΩT ), the infinite triangular lattice. We will again find upper and lower
bounds using well-spaced rows and star-elimination. It can be visually useful to restructure ΩT

such that ΩS is clearly a subgraph of ΩT , which it is (analogously to the manner in which we
represented ΩH as a subgraph of ΩS). A simple way of doing this is to construct ΩS and connect
the top-left and bottom-right vertices of each C4 by an edge, as shown in Figure 9.

Because each vertex of ΩT is the center of a K1,6 (ΩT is 6-regular) and χtd(K1,6) = 7, χtd(ΩT ) ≥
7, we will need to use seven distinct labels. In fact, we can do better: because ΩS is a subgraph of
ΩT , χtd(ΩT ) ≥ χtd(ΩS) = 8.
Star-elimination quickly increases the lower bound on χtd(ΩT ) to 11. We will now use star-
elimination to increase the lower bound to 12.
Assume χtd(ΩT ) = 11. We will need to show that there are only six possible labels for the seven
vertices in each K1,6 subgraph of ΩT . We do this by eliminating six of the eleven possible labels
for the neighbors of the central vertex of an arbitrary K1,6 in a hypothetical 11-TDL of ΩT .

1. Assume 5 appears. Then we eliminate 5 and 10; we also eliminate one of 1 and 9, 2 and 8,
3 and 7, and 4 and 6, leaving 11 as well as one from each of these pairs, leaving only five
possible labels for the six neighbors of 5; therefore, 5 does not appear.
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1 3 4 9 10 12 13

12 13 1 3 4 9 10

9 10 12 13 1 3 4

3 4 9 10 12 13 1

Figure 10: Subgraph of ΩT with 13-TDL. Each row uses the elements of the minimal 7-element
WSR.

1 4 5 2 3 1

7 10 9 11 12 7

5 2 3 1 4 5

10 9 11 12 7 10

Figure 11: Subgraph of ΩT with 12-TDL. Alternate rows of vertices use the same five labels.

2. Assume 6 appears. Eliminate 3, 5, and 6. Also eliminate one of 1 and 11, 2 and 10, and 4
and 8. This leaves 7 and 9, plus one of each of the three pairs just checked, leaving only five
possible neighbor labels; so 6 does not appear.

3. Assume 4 appears. Eliminate 2, 3, 4, 5, 6, and 8. Also eliminate one of 1 and 7. This leaves
9, 10, and 11, plus one of 1 and 7; so 4 does not appear.

4. Assume 9 appears. Eliminate 4, 5, and 6, as well as one of 7 and 11 and 8 and 10. This
leaves 1, 2, and 3, plus two of 7, 8, 10, and 11; so 9 does not appear.

5. Assume 2 appears. Eliminate 1, 2, 4, 5, 6, and 9. This leaves 3, 7, 8, 10, and 11; so 2 does
not appear.

6. Assume 7 appears. Eliminate 2, 4, 5, 6, and 9. Also eliminate one of 3 and 11. This leaves
1, 8, 9, 10, and one of 3 and 11; so 7 does not appear.

We have now eliminated six labels, so χtd(ΩT ) > 11.

We use minimal well-spaced rows to find an upper bound on χtd(ΩT ). Because a TDL of ΩT

requires seven distinct labels, we will use the (unique) minimal well-spaced row with seven labels
{1, 3, 4, 9, 10, 12, 13}. We can apply this WSR to ΩT as in Figure 10.

We can construct a For a 12-TDL of ΩT using the labels {1, 2, 3, 4, 5, 7, 9, 10, 11, 12}, see Figure
11. Putting these results together we obtain:

Theorem 10. We have χtd(ΩT ) = 12.

We also have a result for the graph obtained from the cubic lattice. Set ΩQ3
to be the cubic

lattice graph. Then we have

Theorem 11. 12 ≤ χtd(ΩQ3) ≤ 13.
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Here the upper bound is obtained from a well-spaced row, and the lower bound is obtained
from star-elimination.

One question that is implicitly raised by the results in this section is when an infinite graph has
a finite total difference labeling number. Clearly if a graph has arbitrarily high degree vertices then
it cannot have a finite total difference labeling number (for that matter it cannot even have a finite
coloring number). This is essentially the only circumstance where the total difference labeling fails
to exist. In particular we have:

Theorem 12. Let G be a countable, infinite graph, where ∆(G) is finite. Then χtd(G) is defined.
Moreover, let M be the largest element of a minimal well-spaced row with ∆(G)2 + 1 elements.
Then χtd(G) ≤M .

Proof. Assume G is a countable, infinite graph with ∆(G) finite. Let S be a well-spaced row with
greatest element M and let the vertices of G be v1, v2, v3 · · · .

We set Ni to be the set of all vertices that are distance one or distance two away from vi. Note
that there are at most ∆(G)2 elements in any Ni.

Then we label the vertices inductively, assigning to each vi the smallest element of S that
has not yet been assigned to any label in Ni. Since Ni itself has at most ∆(G)2 elements, and
S has ∆(G)2 + 1 elements, we can always find such a label. The labeling that results is a total
difference labeling. Since the labeling uses a well-spaced row, we just need to check that there are
no sandwiches and no duplicate adjacent vertices, but both are ruled out since no vertex vj is ever
labeled the same as any other vertex in Nj .

The labeling given in Theorem 12 has some drawbacks. It is frequently much less efficient than
the ideal labeling for an infinite graph. For example, this labeling scheme would tell you that
χtd(ΩS) ≤ 53, since the most efficient well-spaced row with ∆(ΩS)2 +1 = 42 +1 = 17 elements has
largest element 53. Second, the specific labeling you get from this is not canonical but depends
sensitively on the order the vertices are listed.

Note also that although we have only stated Theorem 12 for countable graphs, this phrasing is
essentially a matter of convenience to make the proof straightforward and avoid any issues involving
the Axiom of Choice. The theorem is also valid for larger cardinality graphs as long as one assumes
Choice.

4 Cloning and hypercubes

Let Qd be the graph obtained from the d-dimensional hypercube. That is, Q0 is a single vertex,
Q1 is the graph of two connected vertices, Q2 is the square, and so on.

Straightforward computation establishes that χtd(Q0) = 1, χtd(Q1) = 3, χtd(Q2) = 5, χtd(Q3) =
7, and χtd(Q4) = 9. At this point, one might wish to guess that χtd(Q5) = 11. Alas, this is not
the case. In fact, χtd(Q5) = 10. We cannot give a complete description of χtd(Qd) but will prove
an estimate using a concept we call cloning.

Given a graph G with vertices g1, g2, g3 · · · (with possibly infinitely many vertices), we will
define the clone of G to be the graph made by x1, x2, x3 · · · and y1, y2, y3 · · · with edges given by
the following:

1. xi is connected to xj if and only if gi is connected to gj .

2. yi is connected to yj if and only if gi is connected to gj .

3. xi is connected to yj if and only if i = j.
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To clone a graph G, make a copy of G and connect each vertex of G to its corresponding copy.
Notice that the series of hypercubes is obtained by cloning the graph that is just a lone vertex.
Given a graph G, we will write cl(G) to be the clone of G. Thus, for example, if G is the square
graph Q2, then cl(G) is the 3-d cube graph Q3, and cl(cl(G)) is the 4-d hypercube graph Q4, and
so on.

Estimating χtd(G) for hypercubes will rely on the following lemma:

Lemma 13. If G is a graph, then χtd(cl(G)) ≤ 2χtd(G) + 1.

Proof. Let f(G) be a TDL function of G. Let H = cl(G). We label H with labeling func-
tion h defined as follows: For each vertex gi in G, h(xi) = f(gi) and h(yi) = f(gi) + Xtd + 1
(where, recall, the xi and yj are corresponding copies of vertices). We claim that this is a
TDL with largest label 2χtd(G) + 1. It is immediately apparent that h(H) has maximum la-
bel χtd(G) + χtd(G) + 1 = 2χtd(G) + 1. Thus, we just need to check that there are no doubles,
sandwiches or staircases.

There are no doubles among the set of xi because they are directly labeled from our total
difference labeling from G. There are no doubles among the yi because the smallest value of any
h(yi) is greater than half the largest value of the yi labels. There is no double going from an xi to
a yi because all the labels for the yi are greater than twice the largest xi value.

There are no sandwiches among the xi because they again have the same labeling as in G.
There are no sandwiches among the yi because each of the yi are all the same values as the xi
but increased by a constant. There are three possible ways there could be a sandwich with a
combination of the xi and the yi. First, there could be a sandwich of the form xa, yb, xc, but this
cannot happen because there is no set of connected vertices of that form. Second, there could be
a sandwich of the form ya, xb, yc, but again there are no connected vertices of that form. The
third possible form of a sandwich is xa, z, yb where z may be either an x or a y vertex. But such
a sandwich would require that h(xa) = h(yb), which is never true.

There are no staircases among the xi because the xi inherited their labels from the labeling
of G. There are no staircases among the yi because their labels are all a constant up from the xi
labels. There are no staircases involving both xi and yi because the difference between the largest
xi and smallest yi is larger than the smallest difference between any xi (which is also the smallest
difference between any yi).

We can apply Lemma 13 inductively to the hypercubes to get the following result:

Proposition 14. For all d we have χtd(Qd) ≤ 2d+1 − 1.

It is pretty clear that Lemma 14 gives what is often a weak bound. For example, we know that
χtd of the square lattice is 8. This would tell us that clone of the square lattice has χtd at most
17. But the clone of the square lattice is a subgraph of the cubic lattice where we know χtd is at
most 13. In this case, Lemma 13 is giving a significant overestimate of the actual value of χtd.

When is it that χtd(cl(G)) = 2χtd(G)+1? Are there infinitely many graphs with this property?
The only graph we are aware of where this bound is exactly equal is when G is a lone vertex. For
certain families of graphs we can prove explicitly that this bound is weak. In the case of a path
graph, the clone is just a cycle graph, and so that this bound is not best possible follow immedi-
ately from Proposition 4 and Proposition 5. The next two results show that this bound is not best
possible for complete graphs and star graphs.

Proposition 15. Let n ≥ 3. Then χtd(cl(Kn)) ≤ 2χtd(Kn).
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Proof. Assume we have the graph Kn with its most efficient total difference labeling. This labeling
for Kn is then the minimal well-spaced row with n elements. We now consider the graph cl(Kn)
with one copy of Kn labeled v1, v2 · · · vn and the other labeled u1, u2 · · ·un, and with vi connected
to ui for i satisfying 1 ≤ i ≤ n. We assign to each of the vi one of the labels from our well-spaced
row from Kn, in increasing order, so f(v1) is smallest label and f(vn) has our largest label. We
note that since this is a well-spaced row we must either be missing 1 as a label or must be missing
2 as a label in our well-spaced row.

Assume that 2 is missing in our well-spaced row. Then for 1 ≤ i ≤ n − 1 we set f(ui) =
f(vi) + χtd(Kn), and set f(un) = 2. We cannot have a double or a triple among the vi because
the vi form a well-spaced row. Since f(vn) > 4 we cannot have a double between vn and un, and
we cannot have a double or a staircase between the other ui and vi by the same logic as we had
with our basic cloning argument in the proof of Lemma 13. Finally, we cannot have a staircase
involving un since the only possible staircase involving 2 is 1− 2− 3 which cannot occur here.

The case where 1 is the missing label is similar.

One obvious question is if one has a random graph (in the Erdős-Renyi sense), is it true that
this Lemma is with probability 1, very weak?

Conjecture 16. For any ε > 0, given the Erdős-Renyi random graph model, with probability 1,
for a random graph G and its clone H, χtd(H) ≤ (1 + ε)χtd(G).

An astute reader may notice that the clone of a graph is the same as the Cartesian product of
the graph with K2. Recall the Cartesian product of two graphs G1, G2 is the graph H = G1�G2

satisfying

1. The set of vertices of H is the Cartesian product of V (G1) and V (G2)

2. A vertex (g1, g2) ∈ V (H) is adjacent to another vertex (g′1, g
′
2) ∈ V (H) if and only if either

g1 = g′1 and g2 is adjacent to g′2 in G2, or g2 = g′2 and g1 is adjacent to g′1 in G1.

Using similar logic as Lemma 13 one can prove:

Theorem 17. Let H = Km�G for some m. Then χtd(H) ≤ mχtd(G) + m(m−1)
2 .

It seems natural to ask the following:

Question 18. Is there a function f(x, y) such that for any graphs G1 and G2 we have χtd(G1�G2) ≤
f(χtd(G1), χtd(G2))?

Another natural question is to ask whether it is always true for any graph G that χtd(cl(G)) >
χtd(cl(G)). This inequality is in fact false for the Petersen graph. If G is the Petersen graph, then
χtd(cl(G)) = χtd(cl(G)) = 10. This raises the following question:

Question 19. Is there a graph G such that for any non-empty graph H, we have χtd(H�G) >
χtd(G)?

Other notions of graph products exist, including the tensor product and strong product, and
it may be natural to ask similar questions about how total difference labeling interacts with those
products.
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1 4 3 1

Figure 12: A non-saturated labeling of P4.

4 1 3 2

Figure 13: A saturated labeling of P4.

5 Saturated graphs

We say that a total difference labeling of a graph G with order n is a saturated labeling if the set of
labels of the graphs are exactly {1, 2, 3 · · ·χtd(G)}, and χtd(()G) = n. We define a saturable graph
as a graph that has at least one saturated labeling. Examples of saturated graphs are C5 and the
Petersen graph.

The graph P4 is an example of a special case of a saturable graph. Note that χtd(P4) = 4, and
that it has two 4-TDLs, one using the labels {1, 3, 4} and one using {1, 2, 3, 4} (see Figures 12 and
13.

Note that the first of these labelings does not use the label 2, and is therefore not a saturated
labeling. However, the second labeling is a saturated labeling.

For C5, the saturated labeling is the only minimal labeling for the graph. Motivated by this
difference in behavior of P4 and C5, we call a graph G supersaturable if every one of its χtd(G)-total
difference labelings is a saturated labeling.

Theorem 20. Let G be a saturable graph with diameter at most 2. Then G is supersaturable.

Proof. Assume G is a saturable graph with diameter at most 2. If a graph has diameter at most
2, then each vertex is at most distance 2 from every other vertex. Therefore, using a label twice in
the graph would always cause a sandwich. Since all vertices must be labeled with different labels,
and the graph has a proper saturated labeling, all of its minimal labelings must be saturable.

One might imagine that in a minimal total distancing labeling of a graph, any pair of vertices
with distance greater than 2 can always be labeled with the same label. Since they are sufficiently
far apart, the two will never be a part of the same labeling obstruction (a double or triple) and
therefore labeling them identically should not cause any issues in the final labeling. However, this
is not the case, as there are supersaturable graphs with diameter greater than 2. An example is
the “triforce graph”, shown in Figure 14, whose four 6-TDLs, all saturated, are shown in Figure 15.

Figure 14: The triforce graph.
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Figure 15: Saturated labelings of the triforce graph.
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Figure 16: A total difference labeling of the Petersen graph.
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Figure 17: Graph I.

8 5

7 1

7 8

3 2

Figure 18: Graph I with non-saturated labeling.

We used a computer algorithm to test all 112 unique order-6 graphs and found 32 such graphs
G where χtd(G) = 6. These 32 graphs graphs were then individually tested for saturability, and a
saturated labeling was found for each of the graphs; therefore, all order-6 graphs with χtd = 6 are
saturable.

It is easier to find by hand all saturable graphs with order less than six: There exist only seven
of them. It is left as an exercise to the reader to find these graphs.

All of the saturable graphs with order less than six have diameter at most 2 and are therefore
all supersaturable. However, even though not all saturable order-6 graphs have diameter at most
2, some are still supersaturable.

One might wonder if for any graph G with order n with χtd(G) = n, G is saturable. While this
is true for all graphs with order at most 6, we can produce counterexamples of larger order. For
example, consider the graph I given in Figure 17, which is made from two K4’s, with one vertex
in each connected to the other by an edge.

Proposition 21. Where I is the graph in Figure 17, χtd(I) = 8, I is connected, I has order
8 = χtd(I), and I is not saturable.

Proof. Note that χtd(I) ≥ 8 as χtd(K4) = 8. The labeling in Figure 18 shows that χtd(I) ≤ 8.

Note further that I has order 8. However, I is not a saturable graph since any TDL of a copy
of K4 which uses labels at most 8 must contain an 8 as a label. Thus, I’s most efficient labeling
contains two 8s and is thus not saturable.

I is one graph in a general class of counterexamples. When there are at least two minimal
well-spaced rows of size n (i.e., D(n) ≥ 2)) we may often construct a counterexample this way by
connecting two copies of Kn as we did with I.
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